Stanislav Taktaev personal web site
Персональный сайт Станислава Тактаева.
 

Search

 | 

Новости/News

 | 

Русский

 | 

English

Форум / Discussion ||

Основные положения теории пространства понятий

3.1. Основные определения

  • Пространство понятий – набор из N одномерных пространств, каждое из которых содержит в себе определенный ранжируемый признак (свойство, характеристику) объекта. Предполагается, что если у при описании конкретного объекта у него не наблюдается некоего конкретного свойства (например, у «стула» нет «мощности»), то данное свойство отражается в нулевое (свернутое) одномерное пространство, но не пропускается (!).
  • Понятие – область пространства понятий (подпространство), соответствующая какому-то объекту в реальном мире.
  • Действие – вид области в пространстве понятий - вектор, соответствующий процессу, производимому над объектом в реальном мире и изменяющее координаты объекта в ПП. В общем случае действие – это тоже подпространтсво.
  • Модификатор– область в пространстве понятий, соответствующий эпитету в реальном языке (прилагательное – Модификатор существительного)
  • Корректор – вектор - в пространстве понятий, соответствующий эпитету в реальном языке (наречие- Корректор глагола)
  • Домен – именованная многомерная область (подпространство) в пространстве понятий, которая объединяет понятия в группы по иерархическим признакам. (понятие «стул» в домене «Мебель», Нож в домене «кухонное оборудование»). Иерархические отношения между понятиями регулируются доменами. Домены имеют внутреннюю структуру пространства понятий. По сути, это «разрезы» пространства понятий по определенным признакам.

3.2. Пространство понятий. Развернутая и свернутая форма представления.

Если принять, что все существующие понятия, описанные в развитых человеческих языках, отражаются в многомерное пространство понятий N (Notion – понятие), то любое понятие, будь то существительное, глагол, прилагательное, или иная часть речи, несущая определенный смысл, может быть отражено как

Entity(существительное, прилагательное, noun, adjective) ->N{{x1,x1’},{x2,x2’},…, |{xn,xn’}|}, где Not- n-мерная область в n- мерном пространстве, где n->∞, а x1…n – измерения (оси координат) данного пространства.

Глагол, Наречие(Verb, adverb)->Вектор Verberb {|x1-x1’|,|x2-x2’|,…, |xn-xn’|}, где Вектор Verberb – вектор в n-мерном пространстве.

В общем случае, действия (глаголы) также могут быть описаны как области пространства понятий, каковыми они на самом деле и являются. Разделение области – векторы – модификаторы соответствуют понятийному разделению объекты – процессы – свойства и сделаны для удобства понимания теории и проведения расчетов.

Представленные выше выражению определяют развернутую форму представления пространства понятий. Однако, на практике, можно считать, значительная часть координат xn=xn’ ( для объектов) , а |xn-xn’| ->0. То есть, проекция конкретной многомерной области какое то измерение ничтожно мала (что означает, что данное понятие, в данном контексте не имеет значимого смысла) . Следовательно, для расчетов и рассуждений данное измерение для данного понятия можно считать вырожденным, пустым, свернутым и координатные данные, сопоставленные с этим измерение в расчетах можно принять нулевыми. Если это измерение вырождено для целого домена, то, очевидно, эти координаты можно опустить в расчетах, указав в каком домене ведутся вычисления.

Для расширения подхода здесь также можно говорить о пространстве понятий в целом как о пространстве с переменной размерностью. Однако, для каждой конкретной области ПП, соответствующей какому домену (предметной области), можно принять конечность и постоянство числа измерений.

Таким образом, свернутая, или расчетная форма представления пространства понятий, будет выглядеть так:

Entity(существительное, прилагательное, noun, adjective) -> N{{x1,x1’},{x2,x2’},…, |{xk,xk’}|}, где N- k-мерная область в n- мерном пространстве, где n->∞, а k –натуральное число, x1…k – измерения (оси координат) данного пространства.

Глагол, Наречие(Verb, adverb)->Вектор Verberb {|x1-x1’|,|x2-x2’|,…, |xn-xn’|}, где Вектор Verberb – вектор в n-мерном пространстве, а k –натуральное число, x1…k – измерения (оси координат) данного пространства.

В дальнейшем, для рассуждений и расчетов, будет использоваться свернутся форма представления пространства понятий.

Если провести несложный анализ, видно, что координатная модель является упрощением фрактальной модели. Упрощение достигается за счет сокращения числа измерений, ведь для описания фрактальной модели потребовалось бы выполнить условие равенства числа понятий и числа измерений.

3.3. Измерения (оси координат) пространства понятий. Точка отсчета.

Первый подход - Рабочей гипотезой является то, что осями координат должны быть сонаправлены наиболее часто встречающимся векторам (действиям, т.е. глаголам). Это очевидно из того, что: количество понятий в развитом (русском) языке – около 200000. Количество глаголов – порядка 10000, причем из них общеупотребительных всего – порядка 500, и они могут быть сгруппированы в примерно в 150 групп. Таким образом, расчетное количество измерений в пространстве понятий – от 150 до 500.

Зададим основные направления. Это будут измерения пространства и оси координат. Здесь возможно придется использовать несколько вариантов осей.

Основные оси должны отражать такие языковые понятия как «увеличить – уменьшить», «усложнить – упростить», «переместить» - изменение состояния, изменения сущности, изменения положения.

Второй подход – оси должны соответствовать качественным (деревянный, сотовый, пластинчатый) и количественным характеристикам (признакам) понятий (холодный – теплый- горячий) . То есть для примера , оси должны соответствовать прилагательным, наречиям в обычном языке, но не только им. В качестве ранжируемых признаков, должны быть использованы количественные характеристики понятий, такие как размер, время, цвет (как длина волны), новизна. (прилагательные со сравнительной степенью?), часть – целое.

Тогда если представить некий иерархический каталог, в котором перечислены все встречающиеся понятия, то самый верхний, корневой уровень каталога (корневой домен) будет соответствовать понятию (описывающему объект) «Мир» и будет иметь все координаты, то есть будет всеобъемлющим и имеющим все возможные признаки. Это значит и то, что диалектически, понятие Мира и не имеет конкретных координат в пространстве понятий, он сам является пространством понятий.

Соответственно, следующий уровень каталога будет иметь определенный способ разделения объектов (и понятий, их описывающих – на домены) – то есть некий признак группировки и ранжирования, который и будет первым измерением (координатой) ПП. Далее, каждый следующий уровень иерархии данного каталога Мира, будет вводить новые измерения, соответствующие тем или иным признакам группировки понятий (доменам), описывающих объекты и их группы.

То есть, понятие (набор понятий) , описывающие конкретный объект, будет иметь наибольшее количество координат описывающих его положение в пространстве понятий, и, следовательно, будет занимать наименьшую область в ПП по отношению ко всем верхним членам иерархии (доменам).

Тогда, каждое измерение будет являться набором признаков, ранжируемых по единственному критерию, и будет содержать в себе определенное количество этих критериев.

Например: <Признак: Вес > <Значения: невесомый, легкий, весомый, тяжелый>

По точке отсчета возможны несколько вариантов. Здесь скорее философский, нежели математический выбор. Также важен практицизм, чтобы упросить прикладное применение теории. Возможные варианты:

- Человек. Поскольку все понятия придуманы человеком, антропоморфны, очевидно что отсчет их расположения в пространстве понятий нужно вести от человека.

- Мир (Бог, Вселенная, Абсолют) – поскольку все понятия являются частью этого понятия, и автоматически входят в этот домен, то используя декрементные оси, можно оценить каждое понятие, как часть Мира. Тогда движение по осям будет соответствовать уменьшению информации, нарастанию энтропии, то есть движению к Хаосу.

- «0», «ноль (Зеро)» - данное понятие является обратным по отношению к Миру, символизируя абсолютное ничто, Хаос. Здесь, наоборот (по отношению к Миру), используя инкрементные оси, можно оценить каждое понятие, по его отличию от Хаоса. Тогда движение по осям будет соответсятвовать увеличению информации в каждом конкретном понятии, уменьшению, энтропии, то есть движению к Абсолюту.

Очевидно, что «Зеро» и «Мир» являются антагонистами, полярными точкам Пространства понятий. Очевидно, что Человек лежит между этими полюсами и, как точка отсчета, ничем не хуже.

Если провести несложный анализ, видно, что координатная модель является упрощением фрактальной модели. Упрощение достигается за счет сокращения числа измерений, ведь для описания фрактальной модели потребовалось бы выполнить условие равенства числа понятий и числа измерений, то есть общая арность графа описывающего пространство понятий составила бы порядка 1.5 млн, что сделало бы вычисления координат каждого конкретного понятия очень затратной по ресурсам.

Одним словом, нужны дополнительные исследования, вычислительные эксперименты, чтобы уточнить какой из подходов является более привлекательным, или есть какие-то дополнительные варианты.

3.4. Единицы изменения – Колмогоровы (Шенноны)

Информационное расстояние Si между понятиями в языках измеряется в битах.

Для Пространства понятий необходима векторная величина. Предлагается использовать вектор, определяющий разность координат в пространстве понятий.

Si=N2-N1

|Si|=Si.

Предлагаемое название – Колмогоровы или Шенноны.

Интересен подход к расстоянию между понятиями при использовании фрактальной модели. Тогда это расстояние будет определяться, видимо, арностью графа в который входят оба измеряемых понятия.

You can ask author:

Pls, carefully type your email!

Your E-mail:
Your Question:

Website from "Summatech"
I'll ready to answer to you: Stanislav Taktaev